

'समानो मन्त्रः समितिः समानी' UNIVERSITY OF NORTH BENGAL B.Sc. Honours 6th Semester Examination, 2023

CC13-MATHEMATICS

RING THEORY AND LINEAR ALGEBRA-II

Time Allotted: 2 Hours

Full Marks: 60

 $3 \times 4 = 12$

The figures in the margin indicate full marks.

GROUP-A

Answer any *four* questions from the following

1. Show that the polynomial $3x^5 + 15x^4 - 20x^3 + 10x + 20$ is irreducible over \mathbb{Q} .

2. Suppose that a, b are two elements in an integral domain, $b \neq 0$ and a is not a unit. Show that $\langle ab \rangle$ is contained in $\langle b \rangle$.

3. Let
$$V = C[0, 1]$$
 and define $\langle f, g \rangle = \int_{0}^{1/2} f(t)g(t) dt$. Is this an inner product on V ?

4. Prove that the ideal $\langle x^2 + 1 \rangle$ is prime in $\mathbb{Z}[x]$ but not maximal in $\mathbb{Z}[x]$.

5. Let
$$V = P_1(\mathbb{R})$$
 and for $p(x) \in V$, define $f_1, f_2 \in V^*$, by $f_1(p(x)) = \int_0^1 p(t) dt$ and

$$f_2(p(x)) = \int_0^2 p(t) dt$$
 Prove that $\{f_1, f_2\}$ is a basis for V^* .
Prove that $\begin{pmatrix} 1 & 1 \\ \end{pmatrix}$ is not diagonalizable.

6. Prove that $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ is not diagonalizable.

GROUP-B

		Answer any <i>four</i> questions from the following	$6 \times 4 = 24$
7.	(a)	Prove that every Euclidean Domain is a PID.	4
	(b)	Prove that in an integral domain, associates of every irreducible element are also irreducible.	2
8.	(a)	Let T be a linear operator on a finite dimensional vector space V and let W be a	3

8. (a) Let T be a linear operator on a finite dimensional vector space V and let W be a T-invariant subspace of V. Then prove that the characteristic polynomial of T_W divides the characteristic polynomial of T.

UG/CBCS/B.Sc./Hons./6th Sem./Mathematics/MATHCC13/2023

(b)	Let V be an inner product space and S_1 and S_2 be two subsets of V. Then prove that $S_1 \subseteq S_2 \Longrightarrow S_1^{\perp} \subseteq S_2^{\perp}$.	3
9. (a)	Let F be a field and $p(x) \in F[x]$. Then prove that $\langle p(x) \rangle$ is a maximal ideal in $F[x]$ iff $p(x)$ is irreducible over F.	4
(b)	Prove that 2 and 5 are not irreducible elements in $\mathbb{Z}[i]$.	2
10.(a)	Prove that in an integral domain, two elements a and b are associates iff $\langle a \rangle = \langle b \rangle$.	3
(b)	Show that $1 + 2i$ and $3 + 5i$ are prime to each other in $\mathbb{Z}[i]$.	3
11.(a)	In \mathbb{R}^3 , with standard inner product, let P be the subspace span{(1, 1, 0), (0, 1, 1)}. Find P^{\perp} .	3
(b)	Let V be a finite dimensional Euclidean space. Then prove that a linear mapping $T: V \rightarrow V$ is orthogonal iff T maps an orthonormal basis to another orthonormal basis.	3
12.(a)	Prove that the set of all normal operators is a closed subset of $L(H, H)$ which contains the set of all self-disjoint operators.	4
(b)	Suppose $A \in L(H, H)$. Then prove that $\langle Ax, x \rangle = 0$ for all $x \in H$ iff $A = 0$.	2

GROUP-C

Answer any two questions from the following	$12 \times 2 = 24$
13.(a) Let $A: H \to H$ is a continuous linear operator, where H is a Hilbert space. Prove that A^* is a continuous linear operator with $ A^* = A $.	5
(b) Prove that the dual space of an n dimensional vector space is n dimensional.	4
(c) Find the minimal polynomial of the matrix	3

(c) Find the minimal polynomial of the matrix

$$A = \begin{pmatrix} -3 & 2\\ 0 & -3 \end{pmatrix}$$

- 14.(a) Let T be an linear operator on $V = \mathbb{R}^2$ defined by T(a, b) = (2a 2b, -2a + 5b)6 for all $(a, b) \in \mathbb{R}^2$. Determine whether T is normal, self-adjoint or neither. Produce an orthonormal basis of eigenvectors of T for V.
 - (b) Let $V = P_1(\mathbb{R})$ and $W = \mathbb{R}^2$ with respective standard ordered bases β and γ . 6 Define $T: V \to W$ by T(p(x)) = (p(0) - 2p(1), p(0) + p'(0)); where p'(x)denotes the derivative of p(x). Then compute $[T^t]_{\gamma^*}^{\beta^*}$ and $[T]_{\beta}^{\gamma}$.

UG/CBCS/B.Sc./Hons./6th Sem./Mathematics/MATHCC13/2023

15.(a) Apply Gram-Schmidt process to the subset $S = \{1, x, x^2\}$ of the inner product space $V = P_2(\mathbb{R})$ with inner product

$$\langle f, g \rangle = \int_{0}^{1} f(t)g(t)dt$$

to obtain an orthonormal basis β for span(S).

- (b) For two subspaces W_1 and W_2 of a finite dimensional vector space V, prove that $(W_1 + W_2)^0 = W_1^0 \cap W_2^0$.
- (c) Let T be a linear operator on a finite dimensional vector space V and let f(t) be 5 the characteristic polynomial of T. Then prove that $f(T) = T_0$, the zero transformation.
- 16.(a) Show that the following polynomials are irreducible:
 - (i) $x^3 [9]$ over \mathbb{Z}_{11} .
 - (ii) $x^4 + 2x + 2$ over \mathbb{Q} .
 - (iii) $x^6 + x^3 + 1$ over \mathbb{Q} .
 - (b) Let *R* be the ring $\mathbb{Z} \times \mathbb{Z}$. Show that the linear equation (5, 0)x + (20, 0) = (0, 0) 3 has infinitely many roots in *R*.

____X_____

(c) In $\mathbb{Z}_7[x]$, factorize $f(x) = x^3 + [1]$ into linear factors.

6

3

4