UNIVERSITY OF NORTH BENGAL
B.Sc. Honours 6th Semester Examination, 2023

CC13-MATHEMATICS

Ring Theory and Linear Algebra-II
Time Allotted: 2 Hours
Full Marks: 60
The figures in the margin indicate full marks.

GROUP-A

Answer any four questions from the following

1. Show that the polynomial $3 x^{5}+15 x^{4}-20 x^{3}+10 x+20$ is irreducible over \mathbb{Q}.
2. Suppose that a, b are two elements in an integral domain, $b \neq 0$ and a is not a unit. Show that $\langle a b\rangle$ is contained in $\langle b\rangle$.
3. Let $V=C[0,1]$ and define $\langle f, g\rangle=\int_{0}^{1 / 2} f(t) g(t) d t$. Is this an inner product on V ?
4. Prove that the ideal $\left\langle x^{2}+1\right\rangle$ is prime in $\mathbb{Z}[x]$ but not maximal in $\mathbb{Z}[x]$.
5. Let $V=P_{1}(\mathbb{R})$ and for $p(x) \in V$, define $f_{1}, f_{2} \in V^{*}$, by $f_{1}(p(x))=\int_{0}^{1} p(t) d t$ and $f_{2}(p(x))=\int_{0}^{2} p(t) d t$. Prove that $\left\{f_{1}, f_{2}\right\}$ is a basis for V^{*}.
6. Prove that $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ is not diagonalizable.

GROUP-B

Answer any four questions from the following
7. (a) Prove that every Euclidean Domain is a PID.
(b) Prove that in an integral domain, associates of every irreducible element are also irreducible.
8. (a) Let T be a linear operator on a finite dimensional vector space V and let W be a T-invariant subspace of V. Then prove that the characteristic polynomial of T_{W} divides the characteristic polynomial of T.

UG/CBCS/B.Sc./Hons./6th Sem./Mathematics/MATHCC13/2023

(b) Let V be an inner product space and S_{1} and S_{2} be two subsets of V. Then prove that $S_{1} \subseteq S_{2} \Rightarrow S_{1}^{\perp} \subseteq S_{2}^{\perp}$.
9. (a) Let F be a field and $p(x) \in F[x]$. Then prove that $\langle p(x)\rangle$ is a maximal ideal in $F[x]$ iff $p(x)$ is irreducible over F.
(b) Prove that 2 and 5 are not irreducible elements in $\mathbb{Z}[i]$.
10.(a) Prove that in an integral domain, two elements a and b are associates iff $\langle a\rangle=\langle b\rangle$.
(b) Show that $1+2 i$ and $3+5 i$ are prime to each other in $\mathbb{Z}[i]$.
11.(a) In \mathbb{R}^{3}, with standard inner product, let P be the subspace $\operatorname{span}\{(1,1,0),(0,1,1)\}$. Find P^{\perp}.
(b) Let V be a finite dimensional Euclidean space. Then prove that a linear mapping
$T: V \rightarrow V$ is orthogonal iff T maps an orthonormal basis to another orthonormal basis.
12.(a) Prove that the set of all normal operators is a closed subset of $L(H, H)$ which contains the set of all self-disjoint operators.
(b) Suppose $A \in L(H, H)$. Then prove that $\langle A x, x\rangle=0$ for all $x \in H$ iff $A=0$.

GROUP-C

Answer any two questions from the following

13.(a) Let $A: H \rightarrow H$ is a continuous linear operator, where H is a Hilbert space. Prove that A^{*} is a continuous linear operator with $\left\|A^{*}\right\|=\|A\|$.
(b) Prove that the dual space of an n dimensional vector space is n dimensional.
(c) Find the minimal polynomial of the matrix

$$
A=\left(\begin{array}{cc}
-3 & 2 \\
0 & -3
\end{array}\right)
$$

14.(a) Let T be an linear operator on $V=\mathbb{R}^{2}$ defined by $T(a, b)=(2 a-2 b,-2 a+5 b)$ for all $(a, b) \in \mathbb{R}^{2}$. Determine whether T is normal, self-adjoint or neither. Produce an orthonormal basis of eigenvectors of T for V.
(b) Let $V=P_{1}(\mathbb{R})$ and $W=\mathbb{R}^{2}$ with respective standard ordered bases β and γ.

Define $T: V \rightarrow W$ by $T(p(x))=\left(p(0)-2 p(1), p(0)+p^{\prime}(0)\right)$; where $p^{\prime}(x)$ denotes the derivative of $p(x)$. Then compute $\left[T^{t}\right]_{\gamma^{*}}^{\beta^{*}}$ and $[T]_{\beta}^{\gamma}$.

UG/CBCS/B.Sc./Hons./6th Sem./Mathematics/MATHCC13/2023

15.(a) Apply Gram-Schmidt process to the subset $S=\left\{1, x, x^{2}\right\}$ of the inner product space $V=P_{2}(\mathbb{R})$ with inner product

$$
\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t
$$

to obtain an orthonormal basis β for $\operatorname{span}(S)$.
(b) For two subspaces W_{1} and W_{2} of a finite dimensional vector space V, prove that $\left(W_{1}+W_{2}\right)^{0}=W_{1}^{0} \cap W_{2}^{0}$.
(c) Let T be a linear operator on a finite dimensional vector space V and let $f(t)$ be the characteristic polynomial of T. Then prove that $f(T)=T_{0}$, the zero transformation.
16.(a) Show that the following polynomials are irreducible:
(i) $\quad x^{3}-[9]$ over \mathbb{Z}_{11}.
(ii) $x^{4}+2 x+2$ over \mathbb{Q}.
(iii) $x^{6}+x^{3}+1$ over \mathbb{Q}.
(b) Let R be the ring $\mathbb{Z} \times \mathbb{Z}$. Show that the linear equation $(5,0) x+(20,0)=(0,0)$ has infinitely many roots in R.
(c) In $\mathbb{Z}_{7}[x]$, factorize $f(x)=x^{3}+[1]$ into linear factors.

